By M. J. Aroney, R. J. W. Le Fèvre, and J. Saxby.

Measurements on dimethyl ether provide information on the anisotropy of polarisability of the unit $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$, and from this the molar Kerr constants are calculated for various conformations of the next two higher ethers. Diethyl ether appears as represented by Fig. 3, and di-n-propyl ether as described in the text relevant to structures 4 d and 4 e . The other ethers cannot be allotted single apparent conformations owing to the large number of possible rotational isomers. If decyl groups have polarisability ellipsoids of revolution, then calculated and observed values of $\mathrm{m}_{\mathrm{m}} \mathrm{K}$ agree when the longitudinal polarisability axes of the decyl groups in $\left(\mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{21}\right)_{2} \mathrm{O}$ lie in the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane and make angles of 65° to the direction of $\mu_{\text {resultant. }}$.

THE present work was started with two objectives, first, to measure the anisotropy of polarisability of dimethyl ether and, secondly, to use the information so obtained, in conjunction with already known polarisabilities of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds, to investigate the average or apparent conformations adopted by higher di-n-alkyl ethers when dissolved in carbon tetrachloride at ordinary temperatures. Eight ethers have been considered. Requisite experimental data (dielectric constants, electric birefringences, etc.), providing dipole moments, molar Kerr constants, etc., are summarised and discussed below.

Experimental

Materials, Apparatus, etc.-Dimethyl ether, prepared from methyl alcohol, then passed through potassium hydroxide solution and two columns of potassium hydroxide pellets, was slowly bubbled via a fine capillary tube into weighed amounts of cold carbon tetrachloride. The higher ethers were prepared and/or purified ${ }^{1}$ to give: diethyl ether (b. p. 33.5-34.5), dipropyl ether (b. p. 89-90 ${ }^{\circ}$), dibutyl ether (b. p. $140-142^{\circ}$), dipentyl ether (b. p. $185-188^{\circ}$), di-isopentyl ether (b. p. $171-173^{\circ}$), didecyl ether (b. p. $175-180^{\circ} / 3-4 \mathrm{~mm}$.), and dihexadecyl

1 Vogel, "A Textbook of Practical Organic Chemistry," Longmans, Green and Co., London, 1951, 2nd edn., p. 308.

Table 1.

Incremental Kerr effects, refractive indices, dielectric constants, and densities for solutions in carbon tetrachloride at 25°.

Solute: Dimethyl ether					
$10^{5} w_{2}$	2908	3032	3399	3533	4440
$10^{7} \Delta B$	-0.020	-0.021	-0.025	-0.028	-0.035
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-0.745$					
$10^{5} w_{2}$	782	1178	1267	1812	2908
$-10{ }^{4} \Delta n$	23	33	-	54	-
ε^{25}	2.2781	$2 \cdot 3013$	$2 \cdot 3139$	$2 \cdot 3448$	$2 \cdot 3996$
d_{4}^{25}	$1 \cdot 56830$	1.56085	$1 \cdot 55814$	1.54639	1.52882

whence $\Sigma \Delta n / \sum w_{2}=-0.291 ; \Sigma \Delta \varepsilon / \sum w_{2}=6.43 ; \sum \Delta d / \sum w_{2}=-2.04$

Solute: Diethyl ether								
$10^{5} w_{2}$	2826	2934	3016	3812	3894	3975	5161	6551
$10^{7} \Delta B$	-	-0.024	-0.025	-0.032	-0.031	-0.033	-0.038	-0.048
$-10^{4} \Delta n$	56	56	69	-	-	-	-	120
d_{4}^{25}	1.53246	1.53170	-	-	-	-	-	1-47074

whence $\Sigma 10^{7} \Delta B / \sum w_{2}=-0.787 ; \Sigma \Delta n / \sum w_{2}=-0.200 ; \sum \Delta d / \sum w_{2}=-1.79$
Solute: Dipropyl ether

$10^{5} w_{2}$	1128	1892	2187	2811	2969	3792
$10^{7} \Delta B$	-0.007	-0.013	-0.014	-0.018	-0.019	-0.024
$-10^{4} \Delta n$	18	-	34	45	-	60
ε^{25}	$2 \cdot 2562$	$2 \cdot 2752$	$2 \cdot 2854$	$2 \cdot 3063$	$2 \cdot 3106$	2.3319
d_{4}^{25}	-	1.5527	-	1.5367	1.5350	1.5218

Solute: Dibutyl ether

$10^{5} w_{2}$	1438	3718	5663	7742	10,826	12,329	15,219	16,529
$10^{7} \Delta B$	-0.005	-0.015	-0.025	-0.036	-0.055	-0.062	-0.073	-0.076
$-10^{4} \Delta n$	-	-	-	87	-	137	164	-
ε^{25}	$2 \cdot 2530$	$2 \cdot 2923$	$2 \cdot 3260$	$2 \cdot 3607$	$2 \cdot 4074$	$2 \cdot 4342$	$2 \cdot 4776$	-
d_{4}^{25}	1.5609	1.5243	$1 \cdot 4944$	$1 \cdot 4654$	$1 \cdot 4209$	1-4007	1-3631	-
	whence $\sum 10^{7} \Delta B / \sum w_{2}=-0.472 ; \sum \Delta n / \sum w_{2}=-0.110$; $\Delta \varepsilon=1.79 w_{2}-0.982 w_{2}{ }^{2} ; \Delta d=-1.66 w_{2}+1.32 w_{2}{ }^{2}$							

Solute: Dipentyl ether

$10^{5} w_{2}$	$\ldots \ldots \ldots \ldots$.	3404	4418	5698	11,240
$10^{7} \Delta B$	$\ldots \ldots \ldots \ldots \ldots$	-0.013	-0.017	-0.022	-0.044
$-10^{4} \Delta n$	$\ldots \ldots \ldots \ldots$.	-	37	48	87

whence $\Sigma 10^{7} \Delta B / \sum w_{2}=-0.388 ; \Sigma \Delta n / \sum w_{2}=-0.083$

$10^{5} w_{2}$	554	1158	1717	2020	2842	3404
ε^{25}	2.2348	$2 \cdot 2426$	$2 \cdot 2521$	$2 \cdot 2587$	$2 \cdot 2673$	$2 \cdot 2768$
d_{4}^{25}	1.57531	$1 \cdot 56594$	1.55698	$1 \cdot 55215$	1.53954	$1 \cdot 53041$
ce $\sum \Delta \varepsilon / \sum w_{2}=1.45 ; ~ \Sigma \Delta d / \Sigma w_{2}=-1.60$.						

Solute: Di-isopentyl ether

$10^{5} w_{2}$	4262	9001	14,042	15,299	16,799	17,470	18,725	24,442
$10^{7} \Delta B$	-0.013	-0.029	-0.045	-0.050	-0.056	-0.057	-0.063	
$-10^{4} \Delta n$		-		135	-		162	201
ε^{25}	$2 \cdot 2839$	2.3426	$2 \cdot 4003$	$2 \cdot 4141$	-	$2 \cdot 4372$	$2 \cdot 4505$	$2 \cdot 5079$
d_{4}^{25}	$1 \cdot 5177$	$1 \cdot 4490$	1.3824	$1 \cdot 3682$	-	$1 \cdot 3396$	1-3249	$1 \cdot 2607$
	whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-0.327 ; \Sigma \Delta n / \sum w_{2}=-0.086$; $\Delta \varepsilon=1.35 w_{2}-0.844 w_{2}{ }^{2} ; \Delta d=-1.59 w_{2}+1.11 w_{2}{ }^{2}$							

Solute: Didecyl ether						
$10^{5} w_{2}$	2471	4220	4875	5674	7253	7826
$10^{7} \Delta B$	-0.005	-0.009	-0.011	-0.014	-0.016	-0.018
$-10^{4} \Delta n$		16	-	23		30
ε^{25}.	2.2430	2.2522	2.2553	2.2594	2.2672	2.2695
d_{4}^{25}	1.54737	1.52194	1.51196	1.50164	$1 \cdot 48152$	1-47239
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-0.223 ; \Sigma \Delta n / \Sigma w_{2}=-0.039 ; \Sigma \Delta \varepsilon / \sum w_{2}=0.61 ; \Sigma \Delta d / \Sigma w_{2}=-1.49$						

Table 1. (Continued.)

Solute: Dihexadecyl ether						
$10^{5} w_{2}$	1290	2477	3124	6588	8230	8824
$10^{7} \Delta B$	-	-	-	-0.008	-0.011	-0.011
$-10^{4} \Delta n$	-	-	-	8	11	-
ε^{25}	-	$2 \cdot 2304$	$2 \cdot 2390$	$2 \cdot 2455$	$2 \cdot 2499$	-
d_{4}^{25}	$1 \cdot 56554$	1.54992	1.53970	$1 \cdot 49134$		
when	$=-0$	$\Sigma \Delta n / \sum w_{2}=-0.013 ; \sum \Delta \varepsilon / \sum w_{2}=0.28 ; ~ \sum \Delta d / \sum w_{2}=-1.43$				

Table 2.
Polarisation, dipole moments, and molar Kerr constants (from observations on solutions in carbon tetrachloride at $\mathbf{2 5}^{\circ}$).

Solute	$\alpha \varepsilon_{1}$	- β	γ	- δ	$\begin{gathered} \infty P_{2} \\ (\text { (c.c. }) \end{gathered}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$	$\mu(\mathrm{D})^{*}$	$\left({ }_{m} K_{2}\right) \times 10^{12}$
$\mathrm{Me}_{2} \mathrm{O}$	$6 \cdot 43$	1.29	$0 \cdot 200$	$10 \cdot 64$	$50 \cdot 2$	13.6	1.32	-3.9
$\mathrm{Et}_{2} \mathrm{O}$	$3 \cdot 87 \dagger$	$1 \cdot 13_{2}$	$0 \cdot 137$	11.24	$59 \cdot 3$	$22 \cdot 1$	1.32	-6.0
$\mathrm{Pr}_{2} \mathrm{O}$	$2.73 \ddagger$	$1.05_{6} \ddagger$	$0 \cdot 108$	$9 \cdot 19$	$68 \cdot 1$	$30 \cdot 9$	1.32	-6.4
$\mathrm{Bu}_{2} \mathrm{O}$	$1.79 \pm$	$1.04{ }^{\text {¢ }} \ddagger$	0.075	6.74	73.5	$41 \cdot 2$	$1 \cdot 21$	$-5 \cdot 3$
$\left(n-\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{O}$	$1 \cdot 45$	1.010	0.057	$5 \cdot 54$	$82 \cdot 3$	$50 \cdot 2$	$1 \cdot 20$	-4.9
(iso- $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{O}$	$1 \cdot 35 \ddagger$	$1 \cdot 003 \ddagger$	0.059	$4 \cdot 67$	80.9	$50 \cdot 3$	$1 \cdot 17$	$-3 \cdot 8$
$\left(n-\mathrm{C}_{10} \mathrm{H}_{21}\right)_{2} \mathrm{O}$	$0 \cdot 61$	$0.94{ }_{0}$	$0 \cdot 027$	$3 \cdot 18$	125.2	$95 \cdot 7$	$1 \cdot 10$	-3.4
$\left(\mathrm{n}-\mathrm{C}_{18} \mathrm{H}_{33}\right)_{2} \mathrm{O}$	$0 \cdot 28$	$0 \cdot 90$	0.009	$1 \cdot 79$	176.3	150.5	0.95	$+0 \cdot 0_{3}$
* Calculated by assuming ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$. Alternatively, the use of ${ }_{\mathrm{D}} P$'s as estimated by Barclay								
and Le Fèvre ${ }^{4}$ leads to dipole moment values D of: $1 \cdot 31\left(\mathrm{Me}_{2} \mathrm{O}\right), 1 \cdot 30_{5}\left(E t_{2} \mathrm{O}\right), \mathrm{l} \cdot 28\left(\mathrm{n}-\mathrm{Pr}_{2} \mathrm{O}\right)$, and $\mathbf{l} \cdot 21$ ($\mathrm{n}-\mathrm{Bu}_{2} \mathrm{O}$).								
If for $\left(\mathrm{C}_{16} \mathrm{H}_{33}\right)_{2} \mathrm{O}$ the distortion polarisation is assumed to be equal to R_{D}, then $\mu=1 \cdot 12 \mathrm{D}$.								
\dagger Calculated from data in ref. 3. \ddagger Measurements made in 1957 by M. R. Smith.								

ether (m. p. 56°, after recrystallisation from diethyl ether). Infrared spectra of the purified products indicated in each case an absence of $\mathrm{O}-\mathrm{H}$ bonds. Carbon tetrachloride, as solvent, was from a sulphur-free bulk supply which had been dried $\left(\mathrm{CaCl}_{2}\right)$, fractionated through a $1-\mathrm{m}$. column packed with glass helices, and then stored with fresh anhydrous calcium chloride. Symbols, methods of calculation, and headings used in the following Tables are explained in ref. 2, pp. 280-283; for convenience these have been recently summarised by Le Fèvre and Sundaram (J., 1962, 1494). For carbon tetrachloride at $25^{\circ}, \varepsilon_{1}=2.2270, d_{1}=1.5845_{4},\left(n_{\mathrm{D}}\right)_{1}$ $=1.4575$, and $B_{1}=0.070 \times 10^{-7}$ (sodium light).

Previous Measurements.-Dipole-moment determinations made before 1948 are listed by Wesson ${ }^{3}$ in the M.I.T. Tables which do not contain values for didecyl and dihexadecyl ether. Since 1948 the following dipole moments (in Debye units) have been recorded (solvent or state, and reference, given in brackets; $\mathrm{B}=$ benzene; $\mathrm{G}=$ gaseous state; it should be noted that not all the μ 's which follow, or those quoted by Wesson, are deduced by assuming ${ }_{\mathrm{D}} P=R_{\mathrm{D}}$): dimethyl ether, 1.25 (B; 4), 1.29 (G; 4); diethyl ether, 1.26 (B; 4), 1.17 (G; 4), 1.21 (5), 1.18 ($\mathrm{B} ; 6$), 1.27 (in $\mathrm{CCl}_{4} ; 7$), 1.14 (in $\mathrm{CS}_{2} ; 7$), 1.14 ($\mathrm{G} ; 8$), 1.28 ($\mathrm{B} ; 9$); di-n-propyl ether, 1.13 (B; 4), 1.18 (G; 4), 1.31 (B; 9); di-n-butyl ether, 1.09 (B; 4), 1.17 (G; 4), 1.26 (B; 9), 1.17 (in kerosene; 10), 1.22 (B; 10), 1.13 (in toluene; 10). Stuart and Volkmann, ${ }^{11}$ and Stuart ${ }^{12}$ have recorded the Kerr constants K of the following ethers as gases ($10^{-15} \mathrm{~K}$ for $\lambda=5400^{\circ} \mathrm{A}$ and 760 mm . pressure): dimethyl ether ${ }^{11}-5$ (at 18°), diethyl ether ${ }^{11}-3.9$ (at $62 \cdot 7^{\circ}$), di-n-propyl ether ${ }^{11}-2.3$ (at 123.9°), and di-n-butyl ether ${ }^{12}-0.7$ (at 184°). The International Critical Tables ${ }^{13}$ cite the Kerr constant B for liquid diethyl ether as $\mathbf{- 0 . 2 0 5}$

[^0]relative to $B\left(\mathrm{CS}_{2}\right)$ as unity; The Le Fèvres ${ }^{14 a}$ give B as $=-0.614 \times 10^{-7}$ (at 25° for sodium light, whence ${ }_{\mathrm{m}} K_{\text {liquid }}=-5.3 \times 10^{-12}$), and ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$ as -7.5×10^{-12} and -8.5×10^{-12}, respectively, in carbon tetrachloride and benzene at 20°.

Discussion

Dimethyl Ether.-Molecular symmetry is such that the principal axes can be located as shown in Fig. 1a, with b_{1} and b_{2} in the plane of $\mathrm{C}-\mathrm{O}-\mathrm{C}, b_{1}$ bisecting the angle COC ; b_{3} is normal to this plane. Le Fèvre and Le Fèvre ${ }^{14 b}$ have specified the polarisability

Fig. la.

Fig. 1b.
ellipsoid for the $\mathrm{C}-\mathrm{O}$ bond in paraldehyde by the semi-axes: $b_{\mathrm{L}}^{\mathrm{CO}}=0.081, b_{\mathrm{T}}^{\mathrm{Co}}=$ $b_{\mathrm{V}}^{\mathrm{C}-\mathrm{O}}=0.039$ (all $\times 10^{-23}$ c.c.) ${ }^{*}$ on the assumption that the " lone-pair" electronic polarisability contributions can be included in the "effective" semi-axes for the C-O links and that the bond ellipsoids thus described are axially symmetric about the intercentre line. These values, used in conjunction with a $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond angle ${ }^{15}$ of $111^{\circ} \pm 4^{\circ}$ and the permanent dipole moment of 1.32 D acting along b_{1}, yield a calculated ${ }_{\mathrm{m}} K$ of $(-0.2 \pm 0.8) \times 10^{-12}$ against the observed ${ }_{\infty}\left({ }_{m} K_{2}\right)$ of -3.9×10^{-12}. For each $\mathrm{C}-\mathrm{H}$ link $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064$ (ref. 16). The experimental errors when handling this gaseous solute are relatively great, estimated at $c a . \pm 1.0 \times 10^{-12}$, but not sufficient to explain the discrepancy. A direct evaluation of the $\mathrm{C}-\mathrm{O}$ bond semi-axes has also been attempted: the assumptions outlined above being retained, ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$ and ${ }_{\mathrm{E}} P(=12.84$ c.c. from addition of bond electronic polarisations listed in ref. 17) can be expressed in terms of the two unknowns $b_{\mathrm{L}}^{\mathrm{C}} \mathrm{O}$ and $b_{\mathrm{T}}^{\mathrm{C}} \mathrm{O}$; however, equations thus derived cannot be solved.

Stuart and Volkmann ${ }^{11}$ have recorded Δ, the depolarisation factor of transversely scattered light, for gaseous dimethyl ether as 0.016 from which a third equation in b_{i} is available, namely,

$$
\frac{10 \Delta}{6-7 \Delta}=\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] /\left(b_{1}+b_{2}+b_{3}\right)^{2} .
$$

The other two equations are:

$$
b_{1}+b_{2}+b_{3}=1.527
$$

and

$$
\infty\left({ }_{\mathrm{m}} K_{2}\right)=(2 \pi N / 9)\left(\theta_{1}+\theta_{2}\right),
$$

where

$$
\theta_{1}=(1 / 45 \boldsymbol{k} T)\left({ }_{\mathrm{D}} P /{ }_{\mathrm{E}} P\right)\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right]
$$

and

$$
\theta_{2}=\left(1 / 45 \boldsymbol{k}^{2} T^{2}\right) \mu^{2}\left[2 b_{1}-b_{2}-b_{3}\right]
$$

Results emerge as:

	From present work	From Stuart and Volkmann ${ }^{11}$
b_{1}..............................	$0 \cdot 490$	$0 \cdot 486$
$b_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	0.620 or 0.417	0.630 or 0.431
b_{3}	0.417 or 0.620	0.431 or 0.630
Σb	1.527	$1 \cdot 547$

[^1]The ambiguity in b_{2} and b_{3} is caused by there being alternative solutions for the quadratic equation giving b_{2} or b_{3}. By subtracting two $\mathrm{C}-\mathrm{H}$ bond contributions from the present set of values, we derive for the polarisability semi-axes of the structural group $\mathrm{H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2}$: $b_{1}{ }^{\prime}=0.362, b_{2}{ }^{\prime}=0.492$ or $0.289, b_{3}{ }^{\prime}=0.289$ or 0.492 . These are used in subsequent calculations.

Higher Ethers as Planar Zig-zags.-For the geometrical specifications of the alkyl groups, the angles COC have been taken as 108°, and the angles $\widehat{\mathrm{CO}}$ and $\widehat{\mathrm{CCC}}$ as 110° (see ref. 15; m 174). For the $\mathrm{C}-\mathrm{C}$ bonds we assume ${ }^{14 b}$ the values $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}=0.099, b_{\mathrm{T}}^{\mathrm{O}-\mathrm{C}}=$ $b_{\mathrm{V}}^{\mathrm{C}-\mathrm{O}}=0.027$. Initially we examined the "planar" (i.e., with all the carbon atoms and the oxygen of a particular structure lying in the one plane) zig-zag conformations for the ethers $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+1}\right)_{2} \mathrm{O}$, where $n=2,3,4,5,10$, and 16 . Calculated values of the molecular semi-axes and molar Kerr constants are listed in Table 3; in all cases the principal axes b_{1}, b_{2}, and b_{3} coincide with the directions X, Y, and Z, respectively, of Fig. 1b.

The values of ${ }_{\mathrm{m}} K$ (calc.) in Table 3B are in good agreement with experiment for $n=2$, 3,4 , and 5 , whence the inference could be drawn that, at infinite dilution in carbon tetrachloride, these solute molecules exist as the " planar" extended structures, and that for the higher homologues, $n=10$ and 16, the zig-zag arrangement is destroyed. Such is true only if, for the $\mathrm{H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2}$ group, $b_{3}{ }^{\prime}$ (which coincides with the Z direction) is greater than $b_{2}{ }^{\prime}$. Stuart (ref. 18, p. 544) has discounted this assumption as being incompatible with Silberstein's theory; Barclay and Le Fèvre ${ }^{4}$ have shown that the ratios $\mu_{\text {sol. }}{ }^{2} / \mu_{\text {gas }}{ }^{2}$ found by experiment do not agree with those calculated for extended zig-zag structures of diethyl, di-n-propyl, and di-n-butyl ether. Volkmann ${ }^{19}$ came to a similar conclusion from comparison of the molecular anisotropies (derived from the depolarisation factors for transversely scattered light) of dimethyl, diethyl, and di-n-propyl ether as gases. Molecular anisotropy factors, calculated from the semi-axes of Table 3B, compared with values of $\delta_{\mathrm{gas}}{ }^{2}$ derived from data in refs. 11, 18, and 19 are:

n	$\delta_{\text {gas }}{ }^{2}$	δ^{2} calc. ex 3 B	n	$\delta_{\text {gas }}{ }^{2}$	δ^{2} calc. ex 3B
2	$0.043-0.044$	0.003	3	0.024	0.0002

The evidence summarised above suggests that the apparent agreement between the ${ }_{\mathrm{m}} K$'s of Table 3B and those derived from experiment is fortuitous. Accordingly we reassessed the problem, accepting the values of $b_{2}{ }^{\prime}$ and $b_{3}{ }^{\prime}$ alternative to those used in Table 3B. It follows, of course, that diethyl ether and the higher di-n-alkyl ethers do not adopt " planar " extended configurations in the experimental medium.

[^2]Diethyl Ether.-Figs. 2a-e represent hypothetical conformations of diethyl ether; $2 \mathrm{a}, 2 \mathrm{~d}$, and 2 e are planar, if we disregard the hydrogen atoms, while 2 c is achieved by rotating the methyl groups about the adjacent $\mathrm{C}-\mathrm{O}$ bonds as axes, until they are 90° from their respective positions shown in 2 a (i.e., so that they are on opposite sides of the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane). Form 2b represents structures intermediate between 2a and 2c. Stuart ${ }^{20}$ has shown from steric considerations that the methyl groups of diethyl ether can have rotation opportunities of about 70° around the energetically most stable form 2 a , and that conformations intermediate between 2 c (which is sterically improbable) and 2d (which is sterically impossible), i.e., having rotations α° greater than $\pm 90^{\circ}$ from 2 a , need not be seriously

Table 4.

Structure	$\alpha\left({ }^{\circ}\right)$	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{\mathrm{m}} K$ (calc.)
2a	0	0.845	1.029	0.727	-2.9
2b	20	0.838	1.026	0.737	-5.1
$"$,	24	0.835	1.025	0.741	-6.1
2c	30	0.830	1.022	0.749	-7.7
2d	90	0.806	0.983	0.812	-16.1
2e	180	0.933	0.941	0.727	+21.3
		0.887	0.987	0.727	+9.0

considered. Table 4 summarises the polarisability semi-axes and molar Kerr constants

Fig. 3. calculated for structures $2 \mathrm{a}-\mathrm{e}$. Only for forms 2 a and 2 d do the principal axes coincide with the directions X, Y, and Z.

The observed $\infty\left({ }_{m} K_{2}\right)$ is -6.0×10^{-12}, indicating that the effective conformation of diethyl ether in carbon tetrachloride is one in which the methyl groups are rotated ca. 24° from the "planar" zig-zag structure so that they are "trans" with respect to the C-O-C plane (Fig. 3).

Di-n-propyl Ether.-From the polarisability parameters of the structure described

Fig. 4a.

Fig. 4b.

Fig. 4c.

Fig. 4d.
above for diethyl ether can be derived, by subtraction of two $\mathrm{C}-\mathrm{H}$ bond contributions, the matrix elements defining the polarisability tensor (in terms of the axes X, Y, and Z) of the group $\mathrm{H}_{2} \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$. Addition of two terminal methyl groups gives rise to an infinitude of possible conformations (see Fig. 4a). In $4 b$ and $4 c$ the $\mathrm{Me}-\mathrm{C}-\mathrm{C}$ planes are normal to the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane, the methyl groups being located as shown. Scale models indicate that rotations of the methyl groups from the $4 b$ and $4 c$ positions towards the positive X direction are unlikely on steric grounds (see particularly ref. 21 regarding volume requirements of a lone electron pair; 4 d represents an intermediate in which the methyl groups have been rotated in the negative X direction from 4 b or 4 c so that they each become parallel with the closest $\mathrm{C}-\mathrm{O}$ bond. Molecular semi-axes and molar Kerr constants calculable for structures 4b-d are listed in Table 5.

Table 5.

Structure	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{\mathrm{m}} K$ (calc.)
4 b	1.145	1.338	1.192	-21.6
4 c	1.164	1.376	1.135	-15.0
4 d	1.195	1.427	1.053	-3.3
4 e	1.187	1.413	1.075	-6.5

Structure 4 e , which gives excellent agreement with the observed ${ }_{\infty}\left({ }_{m} K_{2}\right)$ of -6.4×10^{-12}, is generated by a 20° rotation of the α-methyl group (in Fig. 4d) in the negative Z direction and of the β-methyl group in the positive Z direction.

[^3]Volkmann, ${ }^{19}$ when observing that the molecular anisotropy factor for di-n-propyl ether vapour was distinctly lower than for dimethyl and diethyl ether (which, following Stuart, ${ }^{20}$ he assumed to be planar), concluded that di-n-propyl ether must be more isotropic and therefore non-planar. If the calculated b 's of the structures now suggested for diethyl and dipropyl ether are converted into δ^{2} (calc.) they yield 0.019 and 0.013 , respectively. As a result of the ambiguity in locating b_{2} and b_{3} within the $\mathrm{H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2}$ group, each of these molecules can have two possible conformations (one planar and one non-planar) indistinguishable by their electric moments and molar Kerr constants but differing greatly in their molecular anisotropies. For the non-planar forms, 2 b and 4 e , the values of δ^{2} (calc.) agree not unreasonably with those already quoted for $\delta_{\text {gas }}{ }^{2}$ (not unreasonably, remembering the uncertainties of $\Delta_{\text {gas }}$ values; ref. 18 for example lists two possible values of Δ for dimethyl ether leading to $\delta_{\text {gas }}{ }^{2}$ of 0.027 and 0.045 , of which the former was used in deriving the molecular semi-axes of dimethyl ether) while the planar structures yield δ^{2} (calc.) values of a different order of magnitude.

Ethers of Formula $\left(n-C_{n} H_{2 n+1}\right)_{2} \mathrm{O}$, where $\mathrm{n}=4,5,10$, and 16 . -If one $\mathrm{C}-\mathrm{H}$ link from each terminal carbon of structure 4 e is replaced by a methyl group, thus giving di-n-butyl ether, the distance between the oxygen atom and each methyl group is now too great for any steric interaction, and a number of rotational isomers can be found for which ${ }_{\mathrm{m}} K$ (calc.) equals ${ }_{m} K$ (obs.). This lack of specificity is common to all ethers with $n>3$. Le Fèvre and Williams ${ }^{22}$ have calculated, from experimental data for pure liquid decane, the polarisability semi-axes of this hydrocarbon, assuming that its ellipsoid is one of rotation, i.e., having $b_{1} \neq b_{2}=b_{3} ; b_{1}$ and b_{2} appear as 2.046 and $1 \cdot 778$, respectively. Subtraction of three $\mathrm{C}-\mathrm{H}$ bond contributions from each of these yields polarisability parameters for the group $\mathrm{C}_{10} \mathrm{H}_{19}$ which can now be combined with the semi-axes of the group $\mathrm{H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2}$. If in di-n-decyl ether $b_{\mathrm{L}^{\mathrm{C}}} \mathrm{C}_{10} \mathrm{H}_{10}$ lies in the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane and makes an angle of $180^{\circ}-\theta^{\circ}$ with the positive X direction (parallel to $\mu_{\text {resultant }}$) then the calculated molar Kerr constant will be of the order of $\infty\left({ }_{m} K_{2}\right)$ observed when $\theta=65^{\circ}$ (cf. ref. 23, p. 4153).

Compound	θ°	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{m} K$ (calc.)	$10^{12} \infty\left({ }_{m} K_{2}\right)$
$\left(\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{21}\right)_{2} \mathrm{O} \ldots \ldots .$.	65	$3 \cdot 63$	$4 \cdot 10$	$3 \cdot 46$	$-3 \cdot 7$	$-3 \cdot 4$

The semi-axes b_{1}, b_{2}, and b_{3} lie along the X, Y, and Z co-ordinates, respectively.
An analogous calculation for di-n-hexadecyl ether cannot be made because not all the properties required to give ${ }_{m} K$ for $\mathrm{C}_{16} \mathrm{H}_{34}$ are on record. If the cetyl radical is more " crumpled" than its lower homologues its anisotropy will be less; if it were completely isotropic then ${ }_{\mathrm{m}} K$ (calc.) for $\left(\mathrm{C}_{16} \mathrm{H}_{33}\right)_{2} \mathrm{O}$ would be $-1 \cdot 3 \times 10^{-12}$. If, by analogy with di-n-decyl ether, each $b_{\mathrm{L}}^{\mathrm{C}_{18} \mathrm{H}_{31}}$ lies in the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane and has $\theta=65^{\circ}$ (cf. also ref. 23, p. 4153) then agreement with experiment is achieved only if the ratio $b_{\mathrm{L}}^{\mathrm{C}_{2} \mathrm{H}_{31}} / b_{\mathrm{T}}^{\mathrm{C}_{12} \mathrm{H}_{31}}=b_{\mathrm{L}}^{\mathrm{C}_{1} \mathrm{H}_{31}} / b_{\mathrm{V}}^{\mathrm{C}_{16} \mathrm{H}_{31}}$ is $\mathbf{1} 085$.

$$
\begin{array}{ccccccc}
\text { Compound } & \theta^{\circ} & b_{1} & b_{2} & b_{3} & 10^{12}{ }_{\mathrm{m}} K \text { (calc.) } & 10^{12} \infty\left({ }_{\mathrm{m}} K_{2}\right) \\
\left(\mathrm{n}-\mathrm{C}_{16} \mathrm{H}_{33}\right)_{2} \mathrm{O} \ldots \ldots \ldots . & 65 & 5.79 & 6.21 & 5.64 & +0.06 & +0.03
\end{array}
$$

The semi-axes b_{1}, b_{2}, and b_{3} lie along X, Y, and Z, respectively.
Grateful acknowledgment is made of the award of a Union Carbide Australia Ltd. Scholarship to J. S.
${ }_{23}^{22}$ Le Fèvre and Williams, unpublished work.
${ }^{23}$ Aroney, Izsak, and Le Fèvre, J., 1961, 4148.

[^0]: ${ }^{2}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{3}$ Wesson, "Tables of Electric Dipole Moments,"' Technology Press, M.I.T., 1948.
 ${ }^{4}$ Barclay and Le Fèvre, J., 1952, 1643.
 5 Jatkar and Deshpande, J. Univ. Poona Sci. and Technol., 1954, 48.
 ${ }^{6}$ Sobczyk and Sykin, Roczniki Chem., 1957, 31, 1245.
 7 Kapustin, J. Exp. Theor. Phys. (U.S.S.R.), 1947, 1', 30.
 ${ }^{8}$ Moore and Hobbs, J. Amer. Chem. Soc., 1949, 71, 411.

 - Spurr and Zeitlin, J. Amer. Chem. Soc., 1950, '72, 4832.
 ${ }^{10} \mathrm{Li}$ and Terry, J. Amer. Chem. Soc., 1948, 70, 344.
 11 Stuart and Volkmann, Ann. Phys., 1933, 18, 121.
 12 Stuart, "Die Struktur des freien Moleküls," Springer, Berlin, 1952.
 ${ }^{13}$ International Critical Tables, 1930, Vol. VII, 1st edn., pp. 110-112.

[^1]: * Bond and molecular polarisabilities are quoted throughout in 10^{-23} c.c. units.

 14 Le Fèvre and Le Fèvre, (a) J., 1953, 4041; (b) J., 1956, 3549.
 ${ }^{15}$ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958, M 138.
 ${ }^{16}$ Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 1121.
 ${ }^{17}$ Le Fèvre and Steel, Chem. and Ind., 1961, 670.

[^2]: 18 Stuart, Z. Phys., 1930, 63, 533.
 ${ }_{19}$ Volkmann, Angew. Chem., 1949, 61, 201.

[^3]: ${ }^{20}$ Stuart, Phys. Rev., 1931, 38, 1372.
 ${ }^{21}$ Aroney and Le Fèvre, Proc. Chem. Soc., 1958, 82; J., 1958, 3002.

